

Welcome to AMIMSpy’s documentation!

[image: Build Status] [https://github.com/computational-metabolomics/amimspy/actions] [image: Build Status (AppVeyor)] [https://ci.appveyor.com/project/RJMW/amimspy/branch/master] [image: codecov] [https://codecov.io/gh/computational-metabolomics/amimspy] [image: License] [https://www.gnu.org/licenses/gpl-3.0.html] [image: RTD doc] [https://amimspy.readthedocs.io/en/latest/] [image: Git] [https://github.com/computational-metabolomics/amimspy]

Python package for processing acoustic mist ionization mass spectrometry-based metabolomics and lipidomics data

Contents

	Installation

	API reference

	Command Line Interface

	Credits

	Bugs and Issues

	Changelog

	Citation

	License

Indices and tables

	Index

	Search Page

Installation

Conda (recommended)

Install Miniconda, follow the steps described here [https://docs.conda.io/projects/conda/en/latest/user-guide/install]

Start the conda prompt

	Windows: Open the Anaconda Prompt via the Start menu

	macOS or Linux: Open a Terminal

Create a amimspy specific conda environment.
This will install a the dependencies required to run amimspy:

$ conda create --yes --name amimspy amimspy -c conda-forge -c bioconda -c computational-metabolomics

Note

	The installation process will take a few minutes.

	Feel free to use a different name for the Conda environment

You can use the following command to remove a conda environment:

$ conda env remove -y --name amimspy

This is only required if something has gone wrong in the previous step.

Activate the amimspy environment:

$ conda activate amimspy

To test your amimspy installation, in your Conda Prompt, run the command:

$ amimspy --help

or:

$ python
import amimspy

Close and deactivate the amimspy environment when you’re done:

$ conda deactivate

PyPi

Install the current release of amimspy with pip:

$ pip install .

Note

	The installation process will take a few minutes.

To upgrade to a newer release use the --upgrade flag:

$ pip install --upgrade amimspy

If you do not have permission to install software systemwide, you can
install into your user directory using the --user flag:

$ pip install --user amimspy

Alternatively, you can manually download amimspy from
GitHub [https://github.com/computational-metabolomics/amimspy/releases] or
PyPI [https://pypi.python.org/pypi/amimspy].
To install one of these versions, unpack it and run the following from the
top-level source directory using the Terminal:

$ pip install .

Testing

amimspy uses the Python pytest testing package. You can learn more
about pytest on their homepage [https://pytest.org].

API reference

	process

AMIMSpy builds on top of DIMSpy [https://github.com/computational-metabolomics/dimspy]. Documentation and the API reference for DIMSpy modules and functions are available from here [https://dimspy.readthedocs.io/en/latest/api-reference.html].

process

	
class amimspy.process.Scans(run, well, well_scans, id_snr, id_tol)

	Bases: object

The Scans class.

This class is used to extract high quality scan data from a given sample using a user defined method.

	Parameters

	
	run – Spectral data from multiple samples contained in a single *.mzML file

	well – Well label as provided in the corresponding metadata *.txt file

	well_scans – Scan IDs for all scans in a given well

	id_snr – User provided SNR threshold for differentiating between on and off scans

	id_tol – User provided number of features with SNR > id_snr to tolerate in off scans for labelling the scan type

	
peaklists(well_scans)

	Peak lists are generated for all scan IDs provided as input. The peak lists include the spectral data (mz, intensity, snr, flags) for each scan.
The peak lists havea hard SNR filter applied to diffeentiate between scan types - this is set to 15 by default.

	Parameters

	method – well_scans: List of scan IDs from all scans in the given well.

	Returns

	List of peaklist objects

	
dictionary()

	A dictionary is generated using the scan IDs as keys and a binary identifier of the scan types as values (1 = ‘on-scan’ and 0 = ‘off-scan’).
The scan type is dertemined by the number of features with SNR above the applied SNR, by default >3 features needed to be labelled as ‘on-scan’.

	Returns

	Dictionary object

	
padding()

	Converts the binary values in the dictionary to a string of binary values and adds padding (00) to either side. This padding enables on/off cycles to be identified at the start and end of each well.

:return String object

	
extract(method)

	Generates a dictionary of possible on/off scan cycles (as binary patterns) from AMI-MS data as keys and the indices of the scans within each cycle to be extracted
for the user defined method.
The dictionary is then used to search the AMI-MS data for the provided scan cycles and extract the scan IDs required for downstream processing
by calling the relavent function for the defined method. The scan IDs are returned as a list object.

	Parameters

	method – Method to define which scans to extract data from. The following options are available:

	all_scans - Extracts data from all scans from the given well.

	on_scans - Extracts data from only the on scans from the given well.

	off_scans - Extracts data from only the off scans from the given well.

	on_scan_no_edge - Extracts data from only the on scans from the given well that are not immediately preceded or followed by an off-scan. For the unusual case of only two consecutive on scans, the single scan with the highest intensity is extracted. This is the default method.

	Returns

	List object

Command Line Interface

$ amimspy --help

Executing amimspy version 0.1.0
usage: __main__.py [-h]
 {process-scans,process-samples,hdf5-pm-to-txt,hdf5-pls-to-txt}
 ...

Python package for processing acoustic mist ionisation-mass spectrometry
-based metabolomics and lipidomics data

positional arguments:
 {process-scans,process-samples,hdf5-pm-to-txt,hdf5-pls-to-txt}
 process-scans Process and align scans within samples.
 process-samples Process and align samples.
 hdf5-pm-to-txt Write HDF5 output (peak matrix) to text format.
 hdf5-pls-to-txt Write HDF5 output (peak lists) to text format.

optional arguments:
 -h, --help show this help message and exit

$ amimspy process-scans --help

Executing amimspy version 0.1.0
usage: __main__.py process-scans [-h] -i source [source ...] -ms source
 [source ...] -o OUTPUT -f FAILED_WELLS -pr
 PROCESSED_SCANS
 [-m {all_scans,on_scans,off_scans,on_scan_no_edge}]
 [-d ID_SNR] [-t ID_TOL] [-s SNR_THRESHOLD]
 [-n MIN_SCANS] [-r RSD_THRESHOLD]
 [-fr MIN_FRACTION] -p PPM [-l METALIST]

optional arguments:
 -h, --help show this help message and exit
 -i source [source ...], --input source [source ...]
 Absolute or relative path to the *.mzml file(s). Must
 be in same order as 'metascans *txt files'
 -ms source [source ...], --metascans source [source ...]
 Absolute or relative path to the comma-delimited *.txt
 metadata file. Must be in same order and 'input' *mzml
 files. Header names must contain and be in the
 following order names =['barcode', 'date/time', 'row',
 'col', 'scan', 'ejection time', 'NA'] as output by MS-
 Parser tool
 -o OUTPUT, --output OUTPUT
 Absolute or relative path to the output file
 -f FAILED_WELLS, --failed-wells FAILED_WELLS
 Absolute or relative path to the *.txt output of which
 well failed
 -pr PROCESSED_SCANS, --processed_scans PROCESSED_SCANS
 Absolute or relative path to the *.txt output of which
 well failed
 -m {all_scans,on_scans,off_scans,on_scan_no_edge}, --method {all_scans,on_scans,off_scans,on_scan_no_edge}
 Method to define which scans to extract data from.
 DEFAULT = on_scans_no_edge
 -d ID_SNR, --id-snr ID_SNR
 For identifying on/off scans: Hard SNR threshold for
 differentiating between on/off scans. DEFAULT = 15
 -t ID_TOL, --id-tol ID_TOL
 For identifying on/off scans: Number of features with
 SNR > threshold to tolerate in off scans. DEFAULT = 3
 -s SNR_THRESHOLD, --snr-threshold SNR_THRESHOLD
 SNR threshold to remove noise features. DEFAULT = 2
 -n MIN_SCANS, --min-scans MIN_SCANS
 Minimum number of scans required to be labelled on
 within a well for sample to be taken forward. DEFAULT
 = 0
 -r RSD_THRESHOLD, --rsd-threshold RSD_THRESHOLD
 RSD filter (scan level): Threshold of RSD of features
 across scans in sample for it to be retained. DEFAULT
 = None
 -fr MIN_FRACTION, --min-fraction MIN_FRACTION
 Minimum fraction a peak has to be present. Use 0.0 to
 not apply this filter.
 -p PPM, --ppm PPM Aligning scans: m/z precision (ppm) to align scans in
 sample - REQUIRED PARAMETER!
 -l METALIST, --metalist METALIST
 Absolute or relative path to the tab-delimited *.txt
 file that include the name of the data files (*.mzml)
 and meta data. Column names: filename, replicate,
 batch, injectionOrder, classLabel.

Credits

Developers & Contributors

	Matthew Smith (mjs708@student.bham.ac.uk) - University of Birmingham (UK) [https://www.birmingham.ac.uk/]

	Ralf J. M. Weber (r.j.weber@bham.ac.uk) - University of Birmingham (UK) [https://www.birmingham.ac.uk/staff/profiles/biosciences/weber-ralf.aspx]

Funding

	AMIMSpy acknowledges support from the following funders:
	
	BBSRC and Waters Corporation for an iCASE PhD studentship.

Bugs and Issues

Please report any bugs that you find here [https://github.com/computational-metabolomics/amimspy/issues].
Or fork the repository on GitHub [https://github.com/computational-metabolomics/amimspy/]
and create a pull request (PR). We welcome all contributions, and we will help you to make
the PR if you are new to git.

Changelog

All notable changes to this project will be documented here. For more details changes please refer to github [https://github.com/computational-metabolomics/amimspy] commit history

Citation

To cite AMIMSpy please use the following publication:

License

AMIMSpy is licensed under the GNU General Public License v3.0 (see LICENSE file [https://github.com/computational-metabolomics/amsipy/blob/master/LICENSE] for licensing information). Copyright © 2020 - 2021 Ralf Weber, Matthew Smith

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 amimspy	

 	
 	
 amimspy.process	

Index

 A
 | D
 | E
 | M
 | P
 | S

A

 	
 	
 amimspy.process

 	module

D

 	
 	dictionary() (amimspy.process.Scans method)

E

 	
 	extract() (amimspy.process.Scans method)

M

 	
 	
 module

 	amimspy.process

P

 	
 	padding() (amimspy.process.Scans method)

 	
 	peaklists() (amimspy.process.Scans method)

S

 	
 	Scans (class in amimspy.process)

 _static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to AMIMSpy’s documentation!

 		
 Installation

 		
 Conda (recommended)

 		
 PyPi

 		
 Testing

 		
 API reference

 		
 process

 		
 Command Line Interface

 		
 Credits

 		
 Developers & Contributors

 		
 Funding

 		
 Bugs and Issues

 		
 Changelog

 		
 Citation

 		
 License

_static/minus.png

_static/plus.png

