AMIMSpy

Release 0.1.0

Matthew Smith, Ralf Weber

CONTENTS

1 Contents	3
2 Indices and tables	9
Python Module Index	11
Index	13

Python package for processing acoustic mist ionization mass spectrometry-based metabolomics and lipidomics data

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation

1.1.1 Conda (recommended)

Install Miniconda, follow the steps described here

Start the conda prompt

- Windows: Open the Anaconda Prompt via the Start menu
- macOS or Linux: Open a Terminal

Create a amimspy specific conda environment. This will install a the dependencies required to run amimspy:

```
\ conda create --yes --name amimspy amimspy -c conda-forge -c bioconda -c computational-\ metabolomics
```

Note:

- The installation process will take a few minutes.
- Feel free to use a different name for the Conda environment

You can use the following command to remove a conda environment:

```
$ conda env remove -y --name amimspy
```

This is only required if something has gone wrong in the previous step.

Activate the amimspy environment:

```
$ conda activate amimspy
```

To test your amimspy installation, in your Conda Prompt, run the command:

```
$ amimspy --help
```

or:

```
$ python
import amimspy
```

Close and deactivate the amimspy environment when you're done:

\$ conda deactivate

1.1.2 PyPi

Install the current release of amimspy with pip:

```
$ pip install .
```

Note:

• The installation process will take a few minutes.

To upgrade to a newer release use the --upgrade flag:

```
$ pip install --upgrade amimspy
```

If you do not have permission to install software systemwide, you can install into your user directory using the --user flag:

```
$ pip install --user amimspy
```

Alternatively, you can manually download amimspy from GitHub or PyPI. To install one of these versions, unpack it and run the following from the top-level source directory using the Terminal:

```
$ pip install .
```

1.1.3 Testing

amimspy uses the Python pytest testing package. You can learn more about pytest on their homepage.

1.2 API reference

1.2.1 process

class amimspy.process.Scans(run, well, well_scans, id_snr, id_tol)

Bases: object

The Scans class.

This class is used to extract high quality scan data from a given sample using a user defined method.

Parameters

- run Spectral data from multiple samples contained in a single *.mzML file
- well Well label as provided in the corresponding metadata *.txt file
- well_scans Scan IDs for all scans in a given well
- id_snr User provided SNR threshold for differentiating between on and off scans

• id_tol - User provided number of features with SNR > id_snr to tolerate in off scans for labelling the scan type

peaklists(well_scans)

Peak lists are generated for all scan IDs provided as input. The peak lists include the spectral data (mz, intensity, snr, flags) for each scan. The peak lists have a hard SNR filter applied to differentiate between scan types - this is set to 15 by default.

Parameters method – well_scans: List of scan IDs from all scans in the given well.

Returns List of peaklist objects

dictionary()

A dictionary is generated using the scan IDs as keys and a binary identifier of the scan types as values (1 = 'on-scan' and 0 = 'off-scan'). The scan type is dertemined by the number of features with SNR above the applied SNR, by default >3 features needed to be labelled as 'on-scan'.

Returns Dictionary object

padding()

Converts the binary values in the dictionary to a string of binary values and adds padding (00) to either side. This padding enables on/off cycles to be identified at the start and end of each well.

:return String object

extract(method)

Generates a dictionary of possible on/off scan cycles (as binary patterns) from AMI-MS data as keys and the indices of the scans within each cycle to be extracted for the user defined method. The dictionary is then used to search the AMI-MS data for the provided scan cycles and extract the scan IDs required for downstream processing by calling the relavent function for the defined method. The scan IDs are returned as a list object.

Parameters method – Method to define which scans to extract data from. The following options are available:

- all_scans Extracts data from all scans from the given well.
- on_scans Extracts data from only the on scans from the given well.
- off_scans Extracts data from only the off scans from the given well.
- on_scan_no_edge Extracts data from only the on scans from the given well that are not immediately preceded or followed by an off-scan. For the unusual case of only two consecutive on scans, the single scan with the highest intensity is extracted. This is the default method.

Returns List object

AMIMSpy builds on top of DIMSpy. Documentation and the API reference for DIMSpy modules and functions are available from here.

1.2. API reference 5

6

1.3 Command Line Interface

```
$ amimspy --help
Executing amimspy version 0.1.0
usage: __main__.py [-h]
                   {process-scans,process-samples,hdf5-pm-to-txt,hdf5-pls-to-txt}
Python package for processing acoustic mist ionisation-mass spectrometry
-based metabolomics and lipidomics data
positional arguments:
  {process-scans,process-samples,hdf5-pm-to-txt,hdf5-pls-to-txt}
   process-scans
                       Process and align scans within samples.
                       Process and align samples.
   process-samples
                       Write HDF5 output (peak matrix) to text format.
   hdf5-pm-to-txt
   hdf5-pls-to-txt
                       Write HDF5 output (peak lists) to text format.
optional arguments:
  -h, --help
                        show this help message and exit
```

```
$ amimspy process-scans --help
Executing amimspy version 0.1.0
usage: __main__.py process-scans [-h] -i source [source ...] -ms source
                             [source ...] -o OUTPUT -f FAILED_WELLS -pr
                             PROCESSED SCANS
                             [-m {all_scans,on_scans,off_scans,on_scan_no_edge}]
                             [-d ID_SNR] [-t ID_TOL] [-s SNR_THRESHOLD]
                             [-n MIN_SCANS] [-r RSD_THRESHOLD]
                             [-fr MIN_FRACTION] -p PPM [-1 METALIST]
optional arguments:
                        show this help message and exit
  -h, --help
  -i source [source ...], --input source [source ...]
                        Absolute or relative path to the *.mzml file(s). Must
                        be in same order as 'metascans *txt files'
  -ms source [source ...], --metascans source [source ...]
                        Absolute or relative path to the comma-delimited *.txt
                        metadata file. Must be in same order and 'input' *mzml
                        files. Header names must contain and be in the
                        following order names =['barcode', 'date/time', 'row',
                        'col', 'scan', 'ejection time', 'NA'] as output by MS-
                        Parser tool
  -o OUTPUT, --output OUTPUT
                        Absolute or relative path to the output file
  -f FAILED_WELLS, --failed-wells FAILED_WELLS
                        Absolute or relative path to the *.txt output of which
                        well failed
  -pr PROCESSED_SCANS, --processed_scans PROCESSED_SCANS
                        Absolute or relative path to the *.txt output of which
```

(continues on next page)

(continued from previous page)

```
well failed
 -m {all_scans,on_scans,off_scans,on_scan_no_edge}, --method {all_scans,on_scans,off_
Method to define which scans to extract data from.
                       DEFAULT = on_scans_no_edge
 -d ID_SNR, --id-snr ID_SNR
                       For identifying on/off scans: Hard SNR threshold for
                       differentiating between on/off scans. DEFAULT = 15
 -t ID_TOL, --id-tol ID_TOL
                       For identifying on/off scans: Number of features with
                       SNR > threshold to tolerate in off scans. DEFAULT = 3
 -s SNR_THRESHOLD, --snr-threshold SNR_THRESHOLD
                       SNR threshold to remove noise features. DEFAULT = 2
 -n MIN_SCANS, --min-scans MIN_SCANS
                       Minimum number of scans required to be labelled on
                       within a well for sample to be taken forward. DEFAULT
 -r RSD_THRESHOLD, --rsd-threshold RSD_THRESHOLD
                       RSD filter (scan level): Threshold of RSD of features
                       across scans in sample for it to be retained. DEFAULT
                       = None
 -fr MIN_FRACTION, --min-fraction MIN_FRACTION
                       Minimum fraction a peak has to be present. Use 0.0 to
                       not apply this filter.
 -p PPM, --ppm PPM
                       Aligning scans: m/z precision (ppm) to align scans in
                       sample - REQUIRED PARAMETER!
 -1 METALIST, --metalist METALIST
                       Absolute or relative path to the tab-delimited *.txt
                       file that include the name of the data files (*.mzml)
                       and meta data. Column names: filename, replicate,
                       batch, injectionOrder, classLabel.
```

1.4 Credits

1.4.1 Developers & Contributors

- Matthew Smith (mjs708@student.bham.ac.uk) University of Birmingham (UK)
- Ralf J. M. Weber (r.j.weber@bham.ac.uk) University of Birmingham (UK)

1.4.2 Funding

AMIMSpy acknowledges support from the following funders:

• BBSRC and Waters Corporation for an iCASE PhD studentship.

1.4. Credits 7

1.5 Bugs and Issues

Please report any bugs that you find here. Or fork the repository on GitHub and create a pull request (PR). We welcome all contributions, and we will help you to make the PR if you are new to *git*.

1.6 Changelog

All notable changes to this project will be documented here. For more details changes please refer to github commit history

1.7 Citation

To cite AMIMSpy please use the following publication:

1.8 License

AMIMSpy is licensed under the GNU General Public License v3.0 (see LICENSE file for licensing information). Copyright © 2020 - 2021 Ralf Weber, Matthew Smith

CHAPTER

TWO

INDICES AND TABLES

- genindex
- search

PYTHON MODULE INDEX

а

amimspy.process, 4

12 Python Module Index

INDEX

```
A
amimspy.process
   module, 4

D
dictionary() (amimspy.process.Scans method), 5

E
extract() (amimspy.process.Scans method), 5

M
module
   amimspy.process, 4

P
padding() (amimspy.process.Scans method), 5
peaklists() (amimspy.process.Scans method), 5

S
Scans (class in amimspy.process), 4
```